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The accurate computation of periodic orbits and the precise knowledge of their bifurcation 
properties are very important for studying the behavior of many dynamical systems of physi- 
cal interest. In this paper, we present an iterative method for computing periodic orbits, which 
has the advantage of improving the convergence of previous Newton-like schemes, especially 
near bifurcation points. This method is illustrated here on a conservative, nonlinear Mathieu 
equation, for which a sequence of period-doubling bifurcations is followed, long enough to 
obtain accurate estimates of the two universal scaling constants a, p, as well as the uniz;ersu( 
rate 6, by which the bifurcation values of a parameter q = qk, k = 1,2, 3, . . . . tend to their 
Iimiting value, qrr < co, as k increases. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In recent years, it has been widely recognized that even the simplest nonEinear 
dynamical systems of the form 

can have solutions- (or orbits) x(t), with remarkable properties. Perhaps the most 
remarkable of them all is that, for large classes of initial conditions x(Q), the or 
of (1.1) behave, as 1 ---f a, in an apparently unpredictable, irregular or, as is more 
commonly called, chaotic way [l-.5]. 

These chaotic orbits are located near unstable (hyperbolic) fixed points and 
periodic orbits, and are present at all scales, when (1.1) describes a non-integrable 
HamiZtonian system l5, 61. On the other hand, again in the ~amiltonia~ case, 
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around the stable (elliptic) periodic orbits there are “islands” of regular behavior 
whose size is larger, the smaller the period of the orbit [5-71. 

In fact, periodic orbits are “dense” among all orbits of a Hamiltonian systems 
and-as Poincare himself had suggested [8]-by studying them, one can under- 
stand some of the more “global” properties of the motion of dynamical systems 
[6-101. 

In this paper, we present a rapidly convergent algorithm for calculating periodic 
orbits by computing iteratively, and to any desired accuracy, the coefficients A, of 
their Fourier series expansions. This algorithm becomes especially significant near 
bifurcation points, where new periodic orbits appear, and other more traditional 
approaches (like Newton’s method, etc.) cannot easily distinguish among the 
closely neighboring roots of the associated nonlinear algebraic equations for the 
A,%. 

Here we shall illustrate this method on the equation 

2 + (1 + 2q cos 2t) x - x3 = 0, (1.2) 

derived from the Hamiltonian 

H = ;(i’ + x2) - $x4 + qx2 cos 2t, (1.3) 

by studying its main sequence of period-doubling bifurcations of periodic orbits with 
period Tk = 2k~, k = 1, 2, . . . as the parameter q > 0 in (1.2) is increased. The impor- 
tance of such period doubling sequences as “routes” towards large scale chaotic 
behavior, in Hamiltonian as well as dissipative systems, has been amply discussed 
in the recent literature [2-51 and need not be repeated here. 

It must be pointed out, however, that the method we shall describe in this paper 
represents a definite improvement over an iterative-variational method introduced 
by Eminhizer et al. [9] and Helleman and Bountis [6] to obtain periodic solutions 
of dynamical systems like (1.2). It is an improvement in the sense that it converges 
more rapidly than Helleman’s Newton-like scheme [lo], when applied to the 
period-doubling bifurcations of (1.2). The main reason behind this improvement is 
that our method of “root-searching” is not affected by a Jacobian taking small 
values in between neighboring roots, while Newton’s method is notorious for 
breaking down precisely in that case. 

Thus, we start in the next section by reviewing Budinsky’s application of the 
more usual iterative Fourier schemes to the period-doubling bifurcations of 
Eq. (1.2) [7]. We also outline there briefly her stability analysis using Hill’s deter- 
minants and discuss the accuracy limitations encountered already in determining 
the third bifurcation, i.e., that of the period 8 (in units of rc) orbit out of the orbit 
of period 4. 

Then, in Section 3, we describe our method for solving the nonlinear algebraic 
equations of Section 2 (for the Fourier coefficients A, of these orbits) and present 
our results for the bifurcations of period 4, period 8, and period 16 orbits. Denoting 
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by qk the value of q at which the orbit of period 2k appears, we compute, in 
Section 4, to high accuracy the ratios 

6k=(qk-qk+l)l(qk+1-qk+2), k = 1, 2, 3, ..; (1.4) 

and verify that they quickly tend to the universal number 6 = 8.7240972.. 
[ 11, 12, 3, 41 as k increases. 

Moreover, in Section 4, we compute the first approximations of the ~~~v~~sa~ 
scaling constant, 

a= lim 
d 

-A- = 4.0180767..., 
d bW n-m n+l 

where d, is the distance of the two nearest points of a periodic orbit of period 2” 
(when it bifurcates to a period 2”+’ orbit), as well as approximations of the secon 
universal scaling constant /?= 16.36389... [12]. All these values turn out to agree 
very well with those given in the literature 111, 123 for area-preserving ma 
in the plane. 

We finally end, in Section 5, with some concluding remarks on the applicability 
of our methods to the bifurcation properties of periodic orbits of more general 
dynamical systems. 

2. AN ITERATIVE FOURIER METHOD FOR PERIOD-DOUBLING BIFURCATIONS 

In this section, we describe an iterative Fourier scheme for obtaining periodic 
solutions of the nonlinear Mathieu equation 

~+(1+2qcos2t)x-x3=0, (2.1) 

of period Tk = 2k7c, k = 1, 2, 3, . . . . These solutions (or, orbits) bifurcate out of one 
another at the values qk, with 0 < q1 -C q2 < ... < qm < XI, at which the or 
period Tk- 1 destabilizes and gives “birth” to a stable orbit of period Tk. 

At q = 0, the origin of the phase plane x, 2 is a stable fixed point, surround 
“elliptic” closed curves, as depicted schematically in Fig. la. At 0 < q < 1, this 
has become unstable and a stable period 2 (in units of z) orbit has appeared, inter- 
secting at the points I,, I2 the surface of section 11-41, 

see Fig. lb. 
Following these points by solving (2.1) numerically (e.g., by a standar 

Runge-Kutta-type scheme) one finds that they turn unstable at 

q = q1= 0.501041950415, (2.3) 
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FIG. 1. A schematic drawing of the intersections of orbits of the nonlinear Mathieu equation (2.1) 
with the x, i surface of Section (2.2), at t = m-c, n = 0, 1, 2, 3...: (a) q = 0, the integrable case, where all 
orbits lie on the plane; (b) O<q& 1, where there is a stable period 272 orbit labeled by I; (c) q=O.Sl, 
where orbit I has destabilized and given “birth” to the stable period 2x orbits II and III; (d) q = 0.526, 
where orbits II and III have also turned unstable, yielding two stable period 4x orbits. 

giving rise to a pair of period 2 orbits, labeled by II and III in Fig. lc, which are 
not each symmetric w.r.t. the 1 axis, but do possess this symmetry w.r.t. each other 
(Note that due to the form of Eq. (2.1), if x(t), g(t) is a solution,’ then so is 
-x(-t), q-t).) 

We may thus follow one of these period 2 orbits (e.g., the one labeled by II) and 
find that it also destabilizes at 

q,<q2= 0.5250750359375, (2.4) 

(as does orbit III, of course) but in a rather peculiar way: Point II, splits into two 
“islands” along the x-axis, while II, into two much thinner islands nearly vertically 
“off’ the horizontal axis, see Fig. Id. This is precisely the period-doubling scenario 
observed in conservative models of two degrees of freedom [ 11, 121 occurring in 
much the same way as Feigenbaum discovered first for one-dimensional systems 
c131. 



A CONVERGENCE-IMPROVING ITERATIVE METHOD 5 

Of course, by the time period 4 orbits have appeared at q = q2, large scale chaos 
has already spread in phase space, as shown schematically in Figs. lc, 61. Even 
though this is the typical situation, it is still interesting to develop methods to 
further pursue period-doubling bifurcations for several reasons: First, much less is 
known about their general properties in higher-dimensional systems [14, IS]. 
Second, there are similar bifurcation phenomena of orbits of much longer 
which occur while there is still large scale regular motion in phase space. And 
finally, one may wish to accurately verify certain universality properties, which are 
expected to hold as k -+ co, or q -+ qm < co. 

In any case, to construct periodic orbits of Eq. (2.1) as convergent Fourier series 
of the form 

x(t) = 5 Anemvr’, A,*=&,, (2.5) 

one starts by specifying the important “winding” or “rotation number” CT [6, 9, 101 
defined by 

c7=m,/m,=v,/v, (2.6) 

as the ratio of two fundamental frequencies of the problem 

v1 =mlv,, v2 = m2v,, (2.7) 

where m, , m2 are positive integers and v, is the recurrence (or, actual) frequency of 
the orbit. 

In the case of our period-doubling sequence of orbits with period 

Tk = 2kn, vr=21-k, k = 1, 2, 3, . ..) (2.8) 

the second frequency of the problem v2 = 2, i.e., is that of the periodic driving term 
in (2.I), and hence m2 = 2k is known for each orbit, cf. (2.7)9 (2.8). Moreover, since 
the period 2” orbit intersects the surface of Section (2.2) m2 times, “‘rotabing” 
around the origin m, times, its m, = 2k- ’ value is also known. Thus, expecting that 
the main Fourier coefficient in (2.5) will be Am,9 one may write (2.1) as a forced 
harmonic oscillator of frequency vl, 

~+v~x=v+(1+2qcos2t)x+x3 (2.9) 

and substitute all of the above in (2.9) to obtain a recursion relation for the An’s 
t-73, 

which are to be solved for the A,‘s from the 1.h.s. This can be done for all n except 
n = m,, for which either the A,, is solved from the r.h.s. of (2.10) or, one scales the 
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A,% by defining B, = AR/x(O) and solves the y1= m1 equation for the initial condi- 
tion x(O), obtaining B,, from the t = 0 equation 

l=B,+ f B,. (2.11) 
w= --m 

This program was carried out in [7] and the periodic orbits of period 2, 4, and 
8 were convergently obtained, but not without making one further modification: A 
term of the form PA, had to be added to both sides of (2.10), where p was a 
suitably chosen constant. Moreover, in the case of period 8, fi had to be assigned 
different values /I1 and p2 for the iteration of the even and odd n coefficients, respec- 
tively. Still, despite these modifications, the A,‘s for period 8 could only be 
calculated with limited accuracy that prevented a satisfactory calculation, e.g., of 
the universal rates of this problem [7]. 

Now, as it has been argued elsewhere [lo], the above iteration scheme can con- 
verge quadratically, i.e., is Newton-like, provided the initial values of the A,% are 
“close enough” to the final ones. And what if there are several possibilities of “final” 
values nearby, as it does happen just beyond a bifurcation point? This is exactly 
where a Newton-like scheme becomes problematic and a new iterative method 
needs to be introduced-like the one described in the next section-which will 
circumvent the convergence problems mentioned above. 

Before describing this new method, however, and its results, we end this section 
with a brief discussion of how the knowledge of the Fourier coefficients A, can be 
used to study the stability properties of the associated periodic orbit. This is done 
using Floquet theory and Hill’s determinants [16, 171 in the following way: Sup- 
pose we want to determine the stability of a periodic orbit f(t) of the form (2.5). 
We first linearize Eq. (2.1) about this orbit, substituting x =i+z(t) and dropping 
O(z*) terms to find 

2(t) + [ 1 + 2q cos 2t - 3P] z(t) = 0. 

This is a Hill’s equation [17] of the type 

z(t) + Q(t) z(t) = 0 

with Q(t) = Q(t + 27~/v,), also expressed as a Fourier series 

Q(t) = 1 + 2q cos 2t - 3Z*= f aneinvrf, 
n= -cc 

and an’s given explicitly in terms of the known A,‘s of (2.5) by 

4 = &,0 + 4(6,,,, +~n,-m,)-3 f A,Jn--k. 
k= --m 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Now, the general solution of (2.13) is given by a linear combination of its 
fundamental solutions z + (t) = exp( 2 Qt) P+ (t), where P, (t) = P, (t c 2n/v,.) and p 
is the so-called Floquet exponent [16,17]. Thus, the boundedness (or u~bo~~~ed- 
ness) of z(t), and hence the stability (or, instability) of the periodic orbit g(t), 
depends on whether the Floquet exponent p is real (or, imaginary). For an orbit 
of frequency v,, cf. (2.8), this is decided finally by the criterion [16]: 

ISkI z / 1 - 2 sin2(2k- %r&) det / (2.16) 
2 

k = 1, 2, . . . . where D is the Hill’s matrix, with elements 

and 

D m,* =a,-,/(a,-?z2v;), nfm 

D 4 m,m = n,m = -co, . ..) co. (2.87) 

Thus, the bifurcation values qk, like q1 and q2 of (2.3) and (2.4), are computed 
as follows: At 4 = ql, S1 = 1, whereupon it starts to decrease reaching - 1 at q = q2. 
Then, we evaluate S, using the coefficients of the period 4 orbit and determine q3 
from: 

13&s,> -1: q2 <q 6 q3 = 0.527780774375. (2.18) 

Wowever, due to limited accuracy in the calculation of the A,‘s of the perio 
orbit, q4 could only be computed to 4-digit accuracy by the methods of this section. 
We, therefore, turn now to the new method of this paper to overcome these 
convergence difficulties and compute to the desired precision the bifurcations at 
4=q4, q5, etc. 

3. A NEW ITERATIVE SCKEME WITH IMPROVED CONVERGENCE 

In order to circumvent the convergence difficulties of the Newton-like schemes of 
the previous section, we shall introduce here a new iterative method for solving 
the nonlinear algebraic equations (2.10). This method, which we call ~~~~~~~~~ 
successive overrelaxation bisection method (NSORB), is an extension of the well- 
known generalized linear iterative methods [18, 191 and has the advantage of not 
being affected by variations in the magnitude of the Jacobian, which is 
what plagues the convergence rate of Newton schemes near bifurcation p 

Below, we briefly describe the main steps of the- NSORB method. More details, 
convergence proofs, and further applications will be published elsewhere 2ei]. 
Suppose we have to solve a system of nonlinear algebraic equations 

fi(x)=@ x = (Xl, I.., x,), i= 1, 2, . . . . iv (3.1) 
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with fi: UP + Iw continuous. Starting with the initial choice, 

x0 = (x?, xi, . ..) x”,), (3.2) 

we shall obtain estimates xk, k = 1, 2, . . . . of the solution x of Eq. (3.1) by solving, 
at the kth step, for the component x = xr + ‘, from the equation 

g,(x) =fi(xf, . ..) xt 1, x, x;k, 1, . ..) x”,) = 0. (3.3) 

We then set the following, using a relaxation parameter w E (0, 11, 

x;+‘=x;+o(x-xf), ,..., N, i=l k = 0, 1, . . . . (3.4) 

and compute x, performing m-steps of the following modified one-dimensional 
bisection method [21-241, 

X a+ 1 =Xa + w gi(xP) %ngi(xi) hi/2a+ ‘Y A = 0, 1, 2, . . . . m - 1 ; (3.5) 

cf. (3.3), where sgn 0 is the well-known sign function, 

i 

-1, if @CO 
sign 0 = 0, if O=O (3.6) 

1, if 0 >O, 

and hi is such that 

sgn g,(xP) .sgn g,(xP + hi) = -1. (3.7) 

It is easy to check that the above iterative scheme converges to the value of x 
that satisfies (3.3). Moreover, it can be shown that the number of iterations m 

needed to obtain x, from (3.5), with accuracy E, is given by [21-241 

m = riOg,(his-l)~, (3.8) 

where ral denotes the least positive integer that is not smaller than the real number 
a. Also, the convergence of the iterates of (3.3)-(3.4) is similar to the ‘convergence 
of the class of generalized linear iterative methods [18, 191, since these belong to 
that class. Finally, instead of the Jacobi iterations (3.3)-(3.4) we can use the relative 
Gauss-Seidel iterations. Thus, rather than solving Eq. (3.3), we can solve the 
following equation in the same manner, 

gi(x)=fi(xy, . . . . xy,‘, x, x;k+l, . ..) x”,) =o. 

The m-step NSORB method described above is particularly suited for problems 
(3.1) whose zeroes are very close to each other, since, in that case, it is well known 
that Newton-like schemes do not always converge to the desired solution, &en 
for initial points starting close to it. Thus, the NSORB method turns out to be 
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especially useful near bifurcation points, where different periodic orbits coexist: 
within very small distances from each other in phase space, and correspon 
different solutions (A,, n = 0, 1, 2, . ..) of the system 

cf. (2.10). This is particularly true if the bifurcated “daughter” periodic orbit has t 
same or double the period of the “mother” orbit, since then both orbits have A, s 
that satisfy equations (3.9), with the same v,. In period-doubling, for example, the 
“mother” orbit can always be recovered, at the Y, of its “daughter,” by setting all 
the odd n coefficients A,, of the “daughter” orbit equal to zero. 

Furthermore note that, with the proper choice of h, in (3..5), it is possible to 
isolate a solution of (3.3) (or (3.9)) without the necessity of a good initial estimate 
(3.2). Finally, since in the various function evaluations, only the signs of these func- 
tions need to be correct, the NSORB method can be applied to problems where t 
actual values of these functions are not known to great precision. 

We now proceed to discuss the results of the application of the NSORB method 
to the period-doubling bifurcations of Eq. (2.1) discussed in the previous section ?las 
a starting point, we began by evaluating, at different values of q, the Fourier coef- 
ficients of the periodic orbit II of period 2, as well as the coefficients of the period 4 
and period 8 orbits that bifurcate out of it (see Figs. lc, d). 

The first 16 of these coefficients are listed below in Table I. They correspond, 
respectively, to q values, at which these orbits are ready to bifurcate to their 
“daughter” periodic orbits of twice the period and have been obtained (to an 
accuracy of lo-“) by iterating Eqs. (3.3))(3.5) some 58-60 times on a ~e~s~~a~ 
computer. 

Observe that, as expected from period-doubling bifurcations of other 
systems [l-5], these orbits intersect the surface of Section (2.2) 
neighboring points. This can be verified here by using the obtaine 
substitute in the Fourier series (2.5) at t = kn, with v, = 1, l/2, and l/4 fo 
periodic orbits of Table I. Note the close proximity of their A, value 
values of the important coefficients A,, A,, and A, elf the period Zn, 47i, and 8~ 
orbits, respectively. 

Observe, more generally, how the A,, values of these orbits compare, for n even: 
As predicted by the theory [25], the A, values of one orbit are very close to the 
A,, values of the orbit that has bifurcated out of it. Thus, even though the 
magnitude of the A,z’s generally decreases rapidly with increasing n, as the period 
of the orbit gets higher, large An’s will appear at higher and higher II (see, e.g., the 
A,, coefficient of period 8~). This implies that an accurate fomentation of high 
period orbits, by this method, requires the knowledge of an exponentially growin 
number of Fourier coefficients A,. Since, according to the above remarks, the 
magnitude of these coefficients does not significantly change with i 
one can estimate the truncation index y1,,, necessary to achieve a 
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TABLE I 

Period 2x (II) orbit 

0.5250750359375 

Period 4x orbit 

0.527780774375 

-0.101079850572 
0.405880573247 
0.215024973106 E-3 
0.162272390174 E-l 
0.249351465912 E-3 
0.974953318166 E-5 
0.194410572006 E-5 

-0.648782646554 E-5 
-0.180318836485 E-6 
-0.581424467648 E-7 
-0.348385768741 E-8 

0.199619373644 E-8 
0.649999927290 E-10 
0.445903971647 E-10 
0.277474320169 E-11 

-0.299587599489 E-12 
-0.781397215670 E-15 

-0.102084233567 
0.112950375934 E-l 
0.406432413099 
0.120475694919 E-2 
0.144233907811 E-3 
0.416106833246 E-4 
0.163382954916 E-l 

-0.286450436909 E-4 
0.253321521252 E-3 

-0.223803586696 E-4 
0.106143802603 E-4 

-0.228511870199 E-5 
0.210237043064 E-5 

-0.297437291704 E-6 
-0.657893753635 E-5 
-0.586867940003 E-8 
-0.182883419201 E-6 

Period 8x orbit 

0.528089535489 

-0.102478551216 
-0.205457274490 E-2 

0.114319030915 E-l 
-0.752684006155 E-3 

0.406442830989 
-0.27200226227 1 E-3 

0.122135978580 E-2 
-0.351572017672 E-4 

0.136194204310 E-3 
-0.546269657348 E-5 

0.425123798715 E-4 
0.906310344601 E-6 
0.163513053801 E-l 
0.182232225575 E-5 

-0.289728555589 E-4 
0.563888239769 E-5 
0.254487597637 E-3 

In particular, for period 8n orbits, we have used ylmaX = 36 and for period 167~ orbits 
n max = 56, which guarantee an accuracy better that lo-* and 10P6, respectively, for 
the location of these orbits in phase space, at all t. 

4. THE COMPUTATION OF UNIVERSAL CONSTANTS 

As we saw in the previous sections, the accuracy of the computation of periodic 
orbits near their bifurcation points is indeed a delicate matter. In a period-doubling 
sequence, like the one we have followed in this paper, several solutions of Eq. (3.9) 
can exist, very close to each other, for the same v, values. 

Moreover, at higher and higher periods, more and more coefficients A, (and 
consequently larger and larger determinants in (2.16)) must be calculated to permit 
a highly accurate computation of the periodic orbits and their bifurcation values. 
Thus, after obtaining the period 87-r orbits on a modest UNIVAC 1100/60, we use 
a supercomputer IBM-3090 600E for our remaining calculations of the orbits of 
period 1677. 

These accurate results were first used to determine to la-digit precision the 
bifurcation values q4 and q5 at which the orbts of period 16~ and 32n, respectively, 
first appear: 

q,=O.528089535489, q5 = 0.528124936353. (4.1) 
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Denoting then by 6 the rate at which these values tend to their limit qmr i.e., 

qk-qoo K 6-k, k large, (4.2) 

we compute the ratios 

fik=(qk-qk+l)/(qk+1-qk+2), (4.3 ) 

for k = 1, 2, 3, using the numbers listed in (2.3), (2.4), (2.8), and (4.1) above: and 
find 

6, = 8.88226488910 

6, = 8.76320985647 

6, = 8.72185249490. 

This sequence indeed appears to indicate that, as k increases, the 6,‘s quickly tend 
to the universal value 6 = 8.72109720..., as expected from other studies on similar 
conservative systems [ 11, 121. 

There are two more universal constants associated with period-doubling bifurca- 
tions of our Eq. (2.1). They correspond to scaling properties of these orbits and are 
computed as follows: 

Denote by dk the distance between the two points of the period 2k orbit, vvhic 
lie on the x-axis of the Poincare surface of section (see Table II), at the q = qk value 
of its bifurcation to an orbit of twice the period. It is expected, from other similar 
studies that 

%=d&,, g a = 4.0180767..., (4.4) 

where this value value of c1 is universal for conservative two-degree of freedom 
Hamiltonian systems. From our results on the nonlinear Mathieu equation (2.1) we 
compute 

cxl = dl/d2 = 4.0219742866 

CQ = d,/d, = 4.0182210698 

which indeed appear to tend rather quickly to the universal value (4.4). 
The universality of the above two constants 01, 6 (with different values than were 

found above) was first observed for dissipative systems, whose dynamics is 
one-dimensional [13]. In the case of conservative systems, on the other hand (like 
area-preserving mappings in the plane), a third universal constant was found, 
corresponding to scaling of the orbits in a direction vertical to their axis of 
symmetry (for our nonlinear Mathieu equation, this is the x-axis of the surface of 
section). 

This third constant, /i’, was incorporated by MacKay-together with the cx of 
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TABLE II* 

Surface of Section Intersections of Periodic Orbits 

x(O) 
40) 

x(n) 
4x1 

x(2n) 
i(2rc) 

x(371) 
1(3n) 

x(471) 
i(471) 

x(571) 

PIIatq=q, P4atq=q, 

0.74407446 0.76923970 
0.0 0.0 

-0.94436961 -0.94683466 
0.0 -0.00790948 

0.74407446 0.71928847 
0.0 0.0 

-0.94436961 -0.94683466 
0.0 0.00790948 

0.74407446 0.76923970 
0.0 0.0 

i(5n) 

x(67[) 
i(67c) 

x(7n) 
1(7n) 

48~) 
n(8n) 

The The 
above above 
points points 

are are 
cyclically cyclically 
repeated repeated 

- 
PSatq=q, P16atq=q, 

0.76297668 0.76454808 
0.0 0.0 

-0.94879603 
- 0.00702482 

0.71862038 
0.00048640 

-0.94578401 
0.00897732 

0.77539626 
0.0 

-0.94578401 
-0.00897732 

0.71862038 
-0.00048640 

-0.94879603 
0.00702482 

0.16297668 
0.0 

-0.94858823 
-0.00735205 

0.71813724 
0.00043 174 

-0.94591482 
0.00908537 

0.77557648 
0.00002964 

-0.94572314 
-0.00896579 

0.71888830 
-0.00055252 

-0.94914647 
0.00674556 

0.76145726 
0.0 

* The numbers listed in this section (and on Table I) have been rounded off. They are known to 
several more digits than is shown here. 

(4.4)-in a renormalization analysis of period-doubling in such two-dimensional 
systems [12] and was found to have the value 

/I = 16.363896879.... (4.5) 

Our equation (2.1) also belongs to this class, since its dynamics can be represented 
by a locally area-preserving Poincare map on its surface of Section (2.2) [4]. 

We have thus denoted by bk, at the q = qk value where the period 2k+ ’ orbit is 
born, the distance between the two points of the period 2k orbit, that had split off 
the x-axis at the previous bifurcation, and computed, using Table II, 

PI = b,/b, = 16.2611705 

/& = b,lb, = 16.4124209. 

These values again appear to approach the universal rate (4.5). 
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5. CONCLUDING REMARKS 

We have described a numerical method for accurately computing the Fourier 
coefficients of periodic orbits of dynamical systems, which we have called the 
NSORB method (nonlinear successive overrelaxation bisection). This method corn- 
plements the usual variational-iterative schemes for such orbits in that it improves 
their convergence near bifurcation points. 

We have applied NSORB here to a period-doubling sequence of periodic 
solutions of a conservative nonlinear Mathieu equation (2.1) and have succeeded in 
overcoming the difficulties of previous schemes, and determining (to any desire 
accuracy) the first few bifurcations of period 2k orbits k = 1, 2, 3, . . . 

As a result, we have been able to compute the first few approximations of the 
universal constants 01, j, and 6 and found that they quickly tend to their expected 
values for this class of problems. These values have been long known from work on 
are-preserving mappings, but have not been as often (and as accurately) ~orn~~ted 
for conservative differential equations, due to serious difficulties of numerical 
precision. 

Of course, we could apply the NSORB scheme to higher order period ~o~bli~~ 
bifurcations and calculate even better approximations to the universal constants 
of this paper, obtaining more digits of the numbers known already from area- 
preserving maps. Instead, we prefer to turn our attention, in future publications, to 
other problems of bifurcations of periodic orbits in dynamical systems. 

In more than two degrees of freedom Hamiltonian systems, for example, the 
results are a lot more sporadic and their generality far are from being establis 
Infinite period-doubling sequences have apparently been observed only within one 
somewhat restricted class of conservative 4dimensional mappings [t 5j. Using 
NSORB we could follow period-doubling sequences in simple three- 
freedom models and see whether they always terminate after a small number of 
bifurcations as some other researchers have suggested [14]. 

Finally, since by the NSORB approach, problems of small divisors [4] do not 
arise, it might be possible to use it to calculate the Fourier coefhcients A,,, of 
quasiperiodic orbits, for which the rotation number CT, cf. (2.6), is ir~a~i~~a~~ Then, 
from the behavior of these A,,,, as a function of some parameter of the equations, 
one could study the convergence properties of the series expansion of the solution 
and from that the “break up” of quasiperiodic orbits, when these series begin to 
diverge [26]. 
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